Abstract

The relative ease with which cadmium (Cd) in agricultural soils can transfer to crop plants can pose a potential health risk to consumers. However, efforts to predict and mitigate these risks are often confounded by the various factors that influence metal accumulation in the edible plant parts. The aim of this work was to identify key drivers that determine Cd concentrations in spinach leaves, potato tubers, onion bulbs and wheat grain grown in commercial horticultural operations across New Zealand (NZ). Paired soil and plant samples (n = 147) were collected from farms across different NZ growing regions. Cadmium concentrations in the edible parts were measured and four different tests were used to examine the potential bioavailability of soil Cd: pseudo-total and porewater concentrations, 0.05 M Ca(NO3)2-extraction and diffusive gradients in thin-films (DGT). Information on a range of soil and climatic variables was also collected. The methods' ability to represent Cd concentrations in the plant parts was assessed through single and multiple regression analysis that considered the different variables and the farm locations. Soil Cd concentrations determined by the different tests were positively related to plant concentrations and there were clear regional differences between these relationships. The Ca(NO3)2 extraction predicted over 76% of the variability in Cd concentrations in onion bulbs and spinach leaves, while DGT and porewater Cd provided the best estimates for potato tubers and wheat grains, respectively, once regional differences were considered, along with certain environmental and soil variables. The results show that certain soil and environmental factors can be a key influence for determining Cd accumulation in the edible parts of some plants and that regional differences are important for modulating the extent to which this occurs. These effects should be considered when trying to mitigate the potential risks arising from Cd in agricultural soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.