Abstract
This paper evaluates the environmental and economic performance of liquefied natural gas (LNG) as a transition fuel to replace diesel in heavy goods vehicles (HGVs). A Well-to-Wheel (WTW) assessment based on real-world HGV drive cycles is performed to determine the life-cycle greenhouse gas (GHG) emissions associated with LNG relative to diesel. The analysis is complemented with a probabilistic approach to determine the total cost of ownership (TCO) across a range of scenarios. The methodologies are validated via a case study of vehicles operating in the UK, using data provided by a large food retailer. The spark-ignited LNG vehicles under study were observed to be 18% less energy efficient than their diesel counterparts, leading to a 7% increase in WTW GHG emissions. However, a reduction of up to 13% is feasible if LNG vehicles reach parity efficiency with diesel. Refuelling at publicly available stations enabled a 7% TCO saving in the nominal case, while development of private infrastructure incurred net costs. The findings of this study highlight that GHG emission reductions from LNG HGVs will only be realised if there are vehicle efficiency improvements, while the financial case for operators is positive only if a publicly accessible refuelling network is available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.