Abstract

The major UV-B screening pigments of the epidermal layer of Scots pine (Pinus sylvestris) needles are flavonol 3-o-glycosides (F3Gs) esterified with hydroxycinnamic acids at positions 3" and 6". Acylation is the last step in biosynthesis and is catalysed by position-specific hydroxycinnamoyl transferases (3" and 6"HCT). The UV-B dependence of these enzyme activities was studied in primary needles of Scots pine seedlings grown under different UV-B conditions in environmentally controlled sun simulators. 6"HCT activity was induced upon UV-B irradiation while 3"HCT activity was not induced but showed high constitutive values. To investigate the biosynthesis of diacylated F3Gs during needle development under natural conditions, the HCT activities and metabolite contents were analysed in needles of field-grown mature pine trees. Accumulation of diacylated compounds as well as of 6"HCT activity occurred transiently in the first year of needle development only. In contrast, 3"HCT activity exhibited broad maxima in two consecutive years during needle growth. The data suggest that acylated F3Gs are first formed as soluble compounds which are then translocated into the cell wall to be bound by their hydroxycinnamoyl residues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.