Abstract

Additive manufacturing of composite materials is gaining important market shares, especially in the aerospace field, since it leads to a reduction of the environmental impacts while ensuring high product performances. Structures of particular interest are isogrids due to their high compression strength-to-weight ratio. In this research, isogrids and solid panels were 3D printed using carbon fiber reinforced polyamide. All the parts presented the same width, height and specific resistances but they differ in thickness, ribs dimensions and drying process after printing. A comparison between their environmental impacts and buckling loads have been conducted. The objective was to determine the configuration which leads to the best compromise between sustainability and mechanical performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.