Abstract

Changes in gene regulation may play an important role in adaptive evolution, particularly during adaptation to a changing environment. However, little is known about the molecular mechanisms underlying adaptively significant variation in gene regulation. To address this question, we are using environmental adaptations in populations of a fish, Fundulus heteroclitus as a window into the molecular evolution of gene regulation. F. heteroclitus are found along the East Coast of North America, with populations distributed along a steep thermal gradient. At the extremes of the species range, populations have undergone local adaptation to their habitat temperatures. A variety of genes differ in their regulation between these populations. We have determined the mechanism responsible for changes in lactate dehydrogenase-B ( Ldh-B) gene regulation. A limited number of mutations in the regulatory sequence of this gene result in changes in its expression. Both the phenotypic (increased LDH activity) and genotypic (changes in Ldh-B regulatory sequences) differences between populations have been shown to be affected by natural selection, rather than genetic drift. Therefore, even a small number of mutations within important regulatory sequences can provide evolutionarily significant variation and have an impact on environmental adaptation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call