Abstract

AbstractConductive hydrogels have shown significant potential in the realm of flexible electronics; however, using water as a solvent introduces problems such as low‐temperature freezing and water loss. One possible solution to address these limitations is replacing water with deep eutectic solvents (DES). In this study, the PHEAA–gelatin–MXene (PGM) eutectogels are constructed with poly(N‐hydroxyethyl acrylamide) (PHEAA) and gelatin as the main components, and MXene nanosheets are added as nanofillers. The PGM eutectogels exhibit exceptional tensile and compressive mechanical properties, including remarkable stretchability (940%), high strength (0.5 MPa), high toughness (1.39 MJ m−3), and impressive compressive strength (0.3 MPa at 80% strain). Additionally, the PGM eutectogels demonstrate excellent adhesion, anti‐freezing, and long‐term anti‐drying abilities. Moreover, the PGM eutectogels multifunctional sensors allow high sensitivity, which enables accurate real‐time and stable monitoring of human activities over a wide temperature range. Consequently, the PGM eutectogels hold great potential as candidates in fields such as flexible wearable devices, personal healthcare, and human–machine interfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.