Abstract

Conductive hydrogels have been extensively used in wearable skin sensors owing to their outstanding flexibility, tissuelike compliance, and biocompatibility. However, the dehydration and embrittlement of hydrogels can result in sensitivity loss or even invalidation, restraining their wearable applications in external environments, especially at low temperatures and in arid environments. Herein, an environment-resistant organohydrogel is developed for multifunctional sensors. A double-network organohydrogel based on hyaluronic acid and poly(acrylic acid-co-acrylamide) is developed, and glycerol is introduced into the organohydrogel network via a solvent displacement strategy. Owing to the water-locking effects of glycerol and tough polymeric backbone, the resultant organohydrogel not only exhibits stable tensibility but also maintains excellent flexibility and stable conductivity with the environment-resistant properties, including freezing resistance against -30 °C and moisture retention at 4% relative humidity in a high temperature of 60 °C. Moreover, a series of organohydrogel-based sensors and an array device are developed to achieve highly sensitive strain, temperature, and humidity responses and exhibit a high gauge factor of 10.79 in the strain-sensitive test. This work develops a universal ionic skin based on organohydrogels to be applied to wearable sensors for health monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.