Abstract

The acoustic adaptation hypothesis (AAH) and ecological character displacement (ECD) are two potential mechanisms shaping call evolution that can predict opposite trends for the differentiation of signals. Under AAH, signals evolve to minimize environmental degradation and maximize detection against background noise, predicting call homogenization in similar habitats due to environmental constraints on signals. In contrast, ECD predicts greater differences in call traits of closely related taxa in sympatry because of selection against acoustic interference. We used comparative phylogenetic analyses to test the strength of these two selective mechanisms on the evolution of advertisement calls in glassfrogs, a highly diverse family of neotropical anurans. We found that, overall, acoustic adaptation to the environment may outweigh effects of species interactions. As expected under the AAH, temporal call parameters are correlated with vegetation density, but spectral call parameters had an unexpected inverse correlation with vegetation density, as well as an unexpected correlation with temperature. We detected call convergence among co-occurring species and also across multiple populations from the same species in different glassfrogs communities. Our results indicate that call convergence is common in glassfrogs, likely due to habitat filtering, while character displacement is relatively rare, suggesting that costs of signal similarity among related species may not drive divergent selection in all systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.