Abstract

The discovery of active galactic nuclei (AGNs) in low-mass (M * ≤ 5 × 109 M ⊙) galaxies has pushed forward the idea that AGN feedback may play a role in quenching star formation in the low-mass regime. In order to test whether AGNs can be a dominant quenching mechanism, we must first disentangle the effects of internal and external processes caused by a galaxy’s environment. We have used the Sloan Digital Sky Survey IV Mapping Nearby Galaxies at Apache Point Observatory survey to produce resolved Baldwin, Phillips, & Terlevich diagrams, and we find 41 AGNs (∼1.3%) in low-mass galaxies. We have studied the group richness (the number of group members) of our AGN and non-AGN samples as a proxy for determining the possible effect of the environment on the gas reservoir in these galaxies. We find that low-mass galaxies hosting AGNs are more likely to be found in isolation or in low-mass groups than galaxies in the non-AGN samples. This preference is even more clear when we split our samples into star-forming and quiescent subsamples. This suggests that environment is not the main cause of quenching in these galaxies, though we cannot rule out the possibility of past mergers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call