Abstract

Organic acids (acetic and formic acid) are produced by the decomposition of ETA (Ethanol Amine, C2H7NO) used as pH controller of secondary water in nuclear power plants. Corrosion Fatigue (CF) tests (R=0.2, 0.1Hz) were conducted to evaluate the effect of acetic acid on the CF crack growth rate in high temperature water at 150°C. Acetic acid significantly influenced the environmental cracking behavior of turbine disc steels in high temperature water. The CF crack growth rates of turbine disc steels increase as the organic acid concentration increase to a critical saturation pH value (~pH 4). Beyond the saturation value of pH, the CF crack growth rates decrease significantly. The higher CF crack growth rate of the higher pH solution in water of intermediate content range (pH 4~pH 5) of acetic acid is due to the higher content of H+ enhancing the reduction reactions. Crack tip blunting prevents the CF cracks from growing with increasing rate in the solution of organic acid concentrations beyond the critical value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.