Abstract
The dissociative adsorption of molecular hydrogen on Pd(x)Ru(1-x)/Ru(0001) (0 ≤ x ≤ 1) has been investigated by means of He atom scattering, Density Functional Theory and quasi-classical trajectory calculations. Regardless of their surroundings, Pd atoms in the alloy are always less reactive than Ru ones. However, the reactivity of Ru atoms is enhanced by the presence of nearest neighbor Pd atoms. This environment-dependent reactivity of the Ru atoms in the alloy provides a sound explanation for the striking step-like dependence of the initial reactive sticking probability as a function of the Pd concentration observed in experiments. Moreover, we show that these environment-dependent effects on the reactivity of H2 on single atoms allow one to get around the usual constraint imposed by the Brønsted-Evans-Polanyi relationship between the reaction barrier and chemisorption energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.