Abstract

This paper presents a model-based assessment of the thermochemical conversion of microalgal biomass into Fischer-Tropsch liquids, hydrogen and electricity through polygeneration. Two novel conceptual plants are investigated, which are both comprised of the same operation units (gasification, water-gas shift, Fischer-Tropsch synthesis, upgrading, separation, Rankine cycle and gas turbines) and mainly differ in the location of the water-gas-shift unit. Both plants are found to present a carbon efficiency greater than conventional biomass-to-liquid processes. The most profitable plants in terms of the saleable products yields ca. 0.23 m3 (1.4 bbl) of liquid transportation fuels (gasoline, kerosene and diesel), ca. 16 kg of hydrogen (716.8 scm), and ca. 1.55 × 109 J (430 kW·h) of electricity per 1000 kg of dried microalgae. The corresponding displaced fossil fuels could offset the carbon emissions by 0.56 kg of carbon dioxide for every kg of processed dried microalgae. Nevertheless, predicted break-even prices are lower than 40 USD per ton of dried microalgae in the base case scenario, which is at least 10 times cheaper than the current best scenario for microalgal biomass production. These low prices are a major impediment to the viability of these thermochemical polygeneration plants, albeit presenting a good potential toward cleaner liquid fuel production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.