Abstract

Given a significative class F of commutative rings, we study the precise conditions under which a commutative ring R has an F-envelope. A full answer is obtained when F is the class of fields, semisimple commutative rings or integral domains. When F is the class of Noetherian rings, we give a full answer when the Krull dimension of R is zero and when the envelope is required to be epimorphic. The general problem is reduced to identifying the class of non-Noetherian rings having a monomorphic Noetherian envelope, which we conjecture is the empty class.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.