Abstract

SummaryEmerging threats of rapid spread highly lethal infectious diseases highlight the urgent need of vaccine development. Here, we describe the preparation of envelope virus-mimetic nanovaccines by hybridizing bioengineered cell membranes with bacterial vesicles. Membranes acquired from bioengineered cells overexpressing viral antigens are fused with bacterial outer membrane vesicles to develop hybrid nanovesicles. Because of the presence of intact viral antigenic proteins with natural conformation bound to lipid bilayer and pathogen-associated molecular patterns, hybrid nanovesicles can strikingly promote antigen uptake, processing and presentation by dendritic cells. Immunization with envelope virus-mimetic nanovaccines shows significantly enhanced maturation and activation of dendritic cells, which elicit robust humoral and cellular immune responses in mice. By virtue of their artificial characteristic and absence of loaded adjuvants, these biomimetic nanovaccines exhibit favorable biosafety. Our work demonstrates the effectiveness of envelope virus-mimetic nanovaccines to boost antigen-specific immunity and proposes a simple yet versatile platform to prepare antiviral vaccines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.