Abstract

Lipid envelope-type nanoparticles are promising carriers for gene delivery. The modification of liposomes with polyethyleneglycol (PEG) can often be useful in liposomal formation and pharmacokinetics. However, there is a dilemma concerning the use of PEG because of its poor intracellular trafficking properties. To overcome this problem, in the present study, we report on a strategy for improving the intracellular trafficking of PEG-modified lipid particles by incorporating a short PEG lipid. The findings presented here show that the incorporation of tetra(ethylene)glycol (TEG)-conjugated cholesterol into a liposome composition is useful in controlling the number of lipid envelopes, resulting in an improvement in particle uniformity with a reduced particle size. The TEG-modified lipid particles were found to enhance transfection activity by more than 100-fold. This increase is attributed to an enhancement of cellular uptake, and nuclear transcription by improving intracellular decoating. Moreover, the use of a various short PEG lipids in lipid particle formation showed a clear threshold polymerization degree (less or equal 25: PEG1100), for achieving stimulated transfection activity. Collectively, the use of short PEG lipid promises to be useful in developing an efficient non-viral gene vector.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call