Abstract

This paper proposes a generic geometry-based stochastic model for nonisotropic scattering vehicle-to-vehicle (V2V) Ricean fading channels. With the proposed model, the level crossing rate (LCR) and average fade duration (AFD) are derived. The resultant expressions are sufficiently general and subsume many well-known existing LCRs and AFDs as special cases. The derived LCR and AFD are further investigated in terms of some important parameters, e.g., the shape of the scattering region (two-ring or ellipse), mean angle, angle spread, and directions of movement of the Tx and Rx (same or opposite direction). More importantly, in this paper, the impact of the vehicular traffic density on the LCR and AFD for nonisotropic scattering V2V Ricean fading channels is investigated for the first time. Excellent agreement is observed between the theoretical LCRs/AFDs and corresponding measured data, thus demonstrating the validity and utility of the proposed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.