Abstract

The linear and nonlinear optical gain of strained-layer InGaAs-AlGaAs quantum well (QW) lasers are studied theoretically, with band mixing effects taken into account. Effects of the biaxial compressive strain of the InGaAs-AlGaAs QW on the band structure are investigated by solving for the Pikus-Bir Hamiltonian. The biaxial compressive strain separates the HH and the LH subbands by pulling down the HH subbands and pushing the LH subbands away from the valence band edge. Since the C-HH transition is dominated by the TE polarization, it is expected that the TE mode gain would be substantially larger than the TM mode gain. The gain and the gain-suppression coefficient are calculated from the complex optical susceptibility obtained by the density matrix formalism. Optical output power is calculated by solving the rate equations for the stationary states with nonlinear gain suppression. The calculated L-I characteristics shows reasonable agreement with the experimental data.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.