Abstract

In this document we achieve exact and asymptotic enumeration of words, compositions over a finite group, and/or integer compositions characterized by local restrictions and, separately, subsequence pattern avoidance. We also count cyclically restricted and circular objects. This either fills gaps in the current literature by e.g. considering particular new patterns, or involves general progress, notably with locally restricted compositions over a finite group. We associate these compositions to walks on a covering graph whose structure is exploited to simplify asymptotic expressions. Specifically, we show that under certain conditions the number of locally restricted compositions of a group element is asymptotically independent of the group element. For some problems our results extend to the case of a positive number of subword pattern occurrences (instead of zero for pattern avoidance) or convergence in distribution of the normalized number of occurrences. We typically apply the more general propositions to concrete examples such as the familiar Carlitz compositions or simple subword patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.