Abstract

A self-avoiding polygon (SAP) on a graph is an elementary cycle. Counting SAPs on the hypercubic lattice ℤ d withd≥2, is a well-known unsolved problem, which is studied both for its combinatorial and probabilistic interest and its connections with statistical mechanics. Of course, polygons on ℤ d are defined up to a translation, and the relevant statistic is their perimeter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.