Abstract

Self-dual cyclic codes form an important class of linear codes. It has been shown that there exists a self-dual cyclic code of length [Formula: see text] over a finite field if and only if [Formula: see text] and the field characteristic are even. The enumeration of such codes has been given under both the Euclidean and Hermitian products. However, in each case, the formula for self-dual cyclic codes of length [Formula: see text] over a finite field contains a characteristic function which is not easily computed. In this paper, we focus on more efficient ways to enumerate self-dual cyclic codes of lengths [Formula: see text] and [Formula: see text], where [Formula: see text], [Formula: see text], and [Formula: see text] are positive integers. Some number theoretical tools are established. Based on these results, alternative formulas and efficient algorithms to determine the number of self-dual cyclic codes of such lengths are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.