Abstract

First, we show that the determinant of a given matrix can be expanded by its principal minors together with a set of arbitrary parameters. The enumeration of Hamiltonian cycles and paths in a graph is then carried out by an algebraic method. Three types of nonalgebraic representation are formulated. The first type is given in terms of the determinant and permanent of a parametrized adjacent matrix. The second type is presented by a determinantal function of multivariables, each variable having domain 0, 1. Formulas of the third type are expressed by spanning trees of subgraphs. When applying the formulas to a complete multipartite graph, one can easily find the results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.