Abstract
This paper presents Enumeration Method in gas condensate reservoir simulation to study the condensate banking complex physics phenomena. Initially, coarse scale grid is commonly used for gas condensate reservoir simulation study. Nevertheless, the coarse scale simulation disregards the condensate bank or it is not able to demonstrate the precise distribution and effects. By introducing Local Grid Refinement (LGR) in simulation model arguably brings a better representation of the condensate bank effect near wellbore but significantly increases the run time. This become severe especially in full field modeling with comingled production. Therefore, enumeration initialization approach was developed to divide the simulation explicitly in coarse scale simulation. During the stops, a region near wellbore was designed where condensate bank parameters were modified based on the history matching. Hence, the drastic change of well performance due to condensate banking could be captured. This drastic change could not physically described in conventional coarse scale simulation model, thus affect prediction accuracy. Comparison between enumeration ways with conventional approach were then investigated. It was found that enumeration method shows a better prediction in investigating the behavior. This is due to its ability to predict mobility changes due to condensate banking, consequently, improve the condensate bank characterization.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.