Abstract
In this paper, we consider the linear complementarity problem (LCP) and present a global optimization algorithm based on an application of the reformulation-linearization technique (RLT). The matrix M associated with the LCP is not assumed to possess any special structure. In this approach, the LCP is formulated first as a mixed-integer 0–1 bilinear programming problem. The RLT scheme is then used to derive a new equivalent mixed-integer linear programming formulation of the LCP. An implicit enumeration scheme is developed that uses Lagrangian relaxation, strongest surrogate and strengthened cutting planes, and a heuristic, designed to exploit the strength of the resulting linearization. Computational experience on various test problems is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.