Abstract

Recent studies have shown that specific rare cells in the blood can serve as an indicator of cancer prognosis, among other purposes. This article demonstrates the concept of separating and detecting rare cells from peripheral blood mononuclear cells via an economical microfluidic disk with a model system. MCF7, labeled with magnetic beads, was used to simulate circulating tumor cells as a target. Jurkat clone E6-1 was used to simulate leukocytes or other cells abundant in human blood. A tailored multistage magnet maximized the magnetic field to ensure optimal trapping efficiency. Results indicate that the yield of detected MCF7 was consistent at approximately 80% when fewer than hundreds of MCF7 cells were mixed in greater than 1 million Jurkat cells. The 80% yield also held for 10 MCF7 in 100million Jurkat (rarity of 107). Compared with the results from autoMACS, the performance was at least 20% higher and was more independent of the number of Jurkat. The viability of the enriched cells was approximately 90±20%, showing that this method caused little damage to trapped cells. The microfluidic disk should be applicable for separation and detection of various rare cells, such as circulating tumor cells and circulating endothelial cells in human blood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call