Abstract

Detection rate and isolation yield of circulating tumor cells (CTCs) are low in lung cancer with approaches due to CTC invasiveness and heterogeneity. In this study, on the basis of the epithelial cell adhesion molecule (EpCAM) phenotype, markers of vimentin and epidermal growth factor receptor (EGFR) phenotype were added to jointly construct a precise and efficient CTC capture system for capture of lung cancer CTCs. A CTC capture system combined with EpCAM lipid magnetic bead (Ep-LMB)/vimentin lipid magnetic bead (Vi-LMB)/EGFR lipid magnetic bead (EG-LMB) was constructed, and its performance was tested. The amount of CTC captured in the blood of patients with lung cancer was detected by immunofluorescence identification and analyzed for clinical relevance. The constructed CTC capture system has low cytotoxicity. The capture efficiency of lung cancer cells in phosphate belanced solution (PBS) system was 95.48%. The capture efficiency in the blood simulation system is 94.55%. The average number of CTCs in the blood of patients with lung cancer was 9.73/2 mL. The quantity distribution of CTCs is significantly correlated with tumor staging and metastasis. The area under the curve (AUC) of CTCs for the diagnosis of lung cancer was 0.9994 (95% CI = 0.9981-1.000, P < .0001). The cutoff value was 4.5/2 mL. The sensitivity was 99.39%, and the specificity was 96.88%. The EpCAM/vimentin/EGFR combined capture system has feasibility and high sensitivity in the detection of lung cancer CTC typing, which can be used as an auxiliary diagnostic indicator for lung cancer and is expected to promote the clinical application of CTCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call