Abstract
In next-generation mobile radio systems, multiple access schemes will support a massive number of uncoordinated devices exhibiting sporadic traffic, transmitting short packets to a base station. Grant-free non-orthogonal multiple access (NOMA) has been introduced to provide services to a large number of devices and to reduce the communication overhead in massive machine-type communication (mMTC) scenarios. In grant-free communication, there is no coordination between the device and base station (BS) before the data transmission; therefore, the challenging task of active users detection (AUD) must be carried out at the BS. For NOMA with sparse spreading, we propose a deep neural network (DNN)-based approach for AUD called active users enumeration and identification (AUEI). It consists of two phases: firstly, a DNN is used to estimate the number of active users; then in the second phase, another DNN identifies them. To speed up the training process of the DNNs, we propose a multi-stage transfer learning technique. Our numerical results show a remarkable performance improvement of AUEI in comparison to previously proposed approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.