Abstract
We enumerate traceless square matrices over finite quotients of compact discrete valuation rings by their image sizes. We express the associated rational generating functions in terms of statistics on symmetric and hyperoctahedral groups, viz. Coxeter groups of types A and B, respectively. These rational functions may also be interpreted as local representation zeta functions associated to the members of an infinite family of finitely generated class-2-nilpotent groups. As a byproduct of our work, we obtain descriptions of the numbers of traceless square matrices over a finite field of fixed rank in terms of statistics on the hyperoctahedral groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.