Abstract

In addition to Goldstone phonons that generically emerge in the low-frequency vibrational spectrum of any solid, crystalline or glassy, structural glasses also feature other low-frequency vibrational modes. The nature and statistical properties of these modes—often termed “excess modes”—have been the subject of decades-long investigation. Studying them, even using well-controlled computer glasses, has proven challenging due to strong spatial hybridization effects between phononic and nonphononic excitations, which hinder quantitative analyses of the nonphononic contribution DG(ω) to the total spectrum D(ω), per frequency ω. Here, using recent advances indicating that DG(ω)=D(ω)−DD(ω), where DD(ω) is Debye’s spectrum of phonons, we present a simple and straightforward scheme to enumerate nonphononic modes in computer glasses. Our analysis establishes that nonphononic modes in computer glasses indeed make an additive contribution to the total spectrum, including in the presence of strong hybridizations. Moreover, it cleanly reveals the universal DG(ω)∼ω4 tail of the nonphononic spectrum, and opens the way for related analyses of experimental spectra of glasses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.