Abstract

The hydrophobic/polar HP model on the square lattice has been widely used toinvestigate basics of protein folding. In the cases where all designing sequences (sequences with unique ground states) were enumerated without restrictions on the number of contacts, the upper limit on the chain length N has been 18-20 because of the rapid exponential growth of thenumbers of conformations and sequences. We show how a few optimizations push this limit by about 5 units. Based on these calculations, we study the statistical distribution of hydrophobicity along designing sequences. We find that the average number of hydrophobic and polar clumps along the chains is larger for designing sequences than for random ones, which is in agreement with earlier findings for N ≤ 18 and with results for real enzymes. We also show that this deviation from randomness disappears if the calculations are restricted to maximally compact structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call