Abstract
AbstractIn order to understand the parameter space Ξd of monic and centered complex polynomial vector fields in ℂ of degree d, decomposed by the combinatorial classes of the vector fields, it is interesting to know the number of loci in parameter space consisting of vector fields with the same combinatorial data (corresponding to topological classification with fixed separatrices at infinity). This paper answers questions posed by Adam L. Epstein and Tan Lei about the total number of combinatorial classes and the number of combinatorial classes corresponding to loci of a specific (real) dimension q in parameter space, for fixed degree d; these numbers are denoted by cd and cd,q, respectively. These results are extensions of a result by Douady, Estrada, and Sentenac, which shows that the number of combinatorial classes of the structurally stable complex polynomial vector fields in ℂ of degree d is the Catalan number Cd−1. We show that enumerating the combinatorial classes is equivalent to a so-called bracketing problem. Then we analyze the generating functions and find closed-form expressions for cd and cd,q, and we furthermore make an asymptotic analysis of these sequences for d tending to ∞. These results are also applicable to special classes of quadratic and Abelian differentials and singular holomorphic foliations of the plane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.