Abstract

Several purine compounds, such as adenine, guanine, adenosine, guanosine, and their related compounds, exhibited enucleation activity on adherent mouse peritoneal exudate cells (macrophages) during centrifugation at 25,000 and 35,000 g for 60 min at 34 degrees-36 degrees C in medium containing one of these compounds. Enucleation activity, however, did not occur in cells treated with adenine nucleotides, inosine, xanthine, or any of the tested pyrimidines. The purine compounds also had enucleation activity on mouse macrophage-like cell lines (P388D1 and RAW 264) and mouse polymorphonuclear leukocytes, but not on other typical cell lines such as a human epithelial cell line (HeLa S-3) or a mouse fibroblast cell line (L929). Cytochalasin B (CB) treatment, however, resulted in the enucleation of all cell types tested, even at a centrifugal force as low as 5,000 g. The process of macrophage enucleation was observed by both light microscopy and scanning electron microscopy. In enucleated macrophages that had been treated with purine compounds, but not with CB, a newly formed cytoplasmic crater-like structure (about 3-9 microns in diameter) was observed at the original site of the nucleus. Surface structures, such as microvilli and membrane ruffles, remained relatively intact in macrophages that had been enucleated by treatment with purine compounds. By contrast, these surface structures were markedly changed in CB-treated macrophages. Purine compounds may affect cytoskeletal elements in ways similar to the well characterized effects of CB, and thus result in the enucleation of phagocytes. However, the characteristic differences in the enucleation activity exhibited by purine compounds and CB may indicate that purines have a mechanism of action different from that of CB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call