Abstract

Entwined space-time paths are bound pairs of trajectories which are traversed in opposite directions with respect to macroscopic time. In this paper we show that ensembles of entwined paths on a discrete space-time lattice are simply described by coupled difference equations which are discrete versions of the Dirac equation. There is no analytic continuation, explicit or forced, involved in this description. The entwined paths are `self-quantizing'. We also show that simple classical stochastic processes that generate the difference equations as ensemble averages are stable numerically and converge at a rate governed by the details of the stochastic process. This result establishes the Dirac equation in one dimension as a phenomenological equation describing an underlying classical stochastic process in the same sense that the Diffusion and Telegraph equations are phenomenological descriptions of stochastic processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.