Abstract

Recovering low-rank structures via eigenvector perturbation analysis is a common problem in statistical machine learning, such as in factor analysis, community detection, ranking, matrix completion, among others. While a large variety of bounds are available for average errors between empirical and population statistics of eigenvectors, few results are tight for entrywise analyses, which are critical for a number of problems such as community detection. This paper investigates entrywise behaviors of eigenvectors for a large class of random matrices whose expectations are low-rank, which helps settle the conjecture in Abbe et al. (2014b) that the spectral algorithm achieves exact recovery in the stochastic block model without any trimming or cleaning steps. The key is a first-order approximation of eigenvectors under the ℓ ∞ norm: where {u k } and are eigenvectors of a random matrix A and its expectation , respectively. The fact that the approximation is both tight and linear in A facilitates sharp comparisons between u k and . In particular, it allows for comparing the signs of u k and even if is large. The results are further extended to perturbations of eigenspaces, yielding new ℓ ∞-type bounds for synchronization ( -spiked Wigner model) and noisy matrix completion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call