Abstract

Enabling self-healing of materials is crucially important for saving resources and energy in numerous emerging applications. While strategies for the self-healing of polymers are advanced, mechanisms for semiconducting inorganic materials are scarce due to the lack of suitable healing agents. Here a concept for the self-healing of metal oxides is developed. This concept consists of metal oxide nanoparticle growth inside the bulk of halogenated polymers and their subsequent entropy-driven migration to externally induced defect sites, leading to recovery of the defect. Herein, it is demonstrated that the pool of self-healing materials is expanded to include semiconductors, thereby increasing the reliability and sustainability of functional materials through the use of metal oxides. It is revealed that electrical properties of tin-doped indium oxide can be partially restored upon healing. Such properties are of immediate interest for the further development of transparent flexible electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.