Abstract

An efficient method to select an optimum set of test points for dictionary techniques in analog fault diagnosis is proposed. This is done by searching for the minimum of the entropy index based on the available test points. First, the two-dimensional integer-coded dictionary is constructed whose entries are measurements associated with faults and test points. The problem of optimum test points selection is, thus, transformed to the selection of the columns that isolate the rows of the dictionary. Then, the likelihood for a column to be chosen based on the size of its ambiguity set is evaluated using the minimum entropy index of test points. Finally, the test point with the minimum entropy index is selected to construct the optimum set of test points. The proposed entropy-based method to select a local minimum set of test points is polynomial bounded in computational cost. The comparison between the proposed method and other reported test points selection methods is carried out by statistical experiments. The results indicate that the proposed method more efficiently and more accurately finds the locally optimum set of test points and is practical for large scale analog systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call