Abstract

Nuclear texture analysis measures the spatial arrangement of the pixel gray levels in a digitized microscopic nuclear image and is a promising quantitative tool for prognosis of cancer. The aim of this study was to evaluate the prognostic value of entropy-based adaptive nuclear texture features in a total population of 354 uterine sarcomas. Isolated nuclei (monolayers) were prepared from 50 µm tissue sections and stained with Feulgen-Schiff. Local gray level entropy was measured within small windows of each nuclear image and stored in gray level entropy matrices, and two superior adaptive texture features were calculated from each matrix. The 5-year crude survival was significantly higher (P < 0.001) for patients with high texture feature values (72%) than for patients with low feature values (36%). When combining DNA ploidy classification (diploid/nondiploid) and texture (high/low feature value), the patients could be stratified into three risk groups with 5-year crude survival of 77, 57, and 34% (Hazard Ratios (HR) of 1, 2.3, and 4.1, P < 0.001). Entropy-based adaptive nuclear texture was an independent prognostic marker for crude survival in multivariate analysis including relevant clinicopathological features (HR = 2.1, P = 0.001), and should therefore be considered as a potential prognostic marker in uterine sarcomas. © The Authors. Published 2014 International Society for Advancement of Cytometry

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.