Abstract

In the field of light-matter interactions, it is often assumed that a classical light field that interacts with a quantum particle remains almost unchanged and thus contains nearly no information about the manipulated particles. To investigate the validity of this assumption, we develop and theoretically analyze a simple Gedankenexperiment which involves the interaction of a coherent state with a quantum particle in an optical cavity. We quantify the resulting alteration of the light field by measuring the fidelity of its initial and equilibrium states. Using Bayesian inference, we demonstrate the information transfer through photon measurements. In addition, we employ the concepts of quantum entropy and mutual information to quantify the entropy transfer from the particle to the light field. In the weak coupling limit, we validate the usually assumed negligible alteration of the light field and entropy transfer. In the strong coupling limit, however, we observe that the information of the initial particle state can be fully encoded in the light field, even for large photon numbers. Nevertheless, we show that spontaneous emission is a sufficient mechanism for removing the entropy initially stored in the particle. Our analysis provides a deeper understanding of the entropy exchange between quantum matter and classical light.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.