Abstract

Assuming time-averaged velocity as a random variable, this study develops an entropy theory for deriving two-dimensional (2D) distribution of velocity in open channels. The theory comprises five parts: (1) Tsallis entropy; (2) principle of maximum entropy (POME); (3) specification of information on velocity in terms of constraints; (4) maximization of entropy; and (5) derivation of the probability distribution of velocity. The entropy theory is then combined with a hypothesis on the cumulative distribution function of velocity in terms of flow depth to derive a 2D velocity distribution. The derived distribution is tested using field as well as laboratory observations reported in the literature and is compared with known velocity distributions. Agreement between velocity values computed using the entropy-based distribution and observed values is found satisfactory. Also, the derived distribution compares favorably with known distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.