Abstract

Aspects of quantum entropy and relative quantum entropy are discussed in the Hilbert model. It is shown that finite values of the relative entropy of states implies a superposition relation between the states. The property is studied in case of tensor product of states and for state reductions. A “Schmidt-like” state, derived from the reduced states, is considered. It is shown that its entropy, relative to the product of the reduced states, is not smaller than the entropy of the reduced states. The main existing results concerning the changement of superposition and entropy under dynamical map are recalled in a uniform way. A class of possible dynamical maps, not necessarily linear, is proposed that do not decrease the entropy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.