Abstract

To solve hyperbolic conservation laws we propose to use high-order essentially nonoscillatory methods based on radial basis functions. We introduce an entropy stable arbitrary high-order finite difference method (RBF-TeCNOp) and an entropy stable second order finite volume method (RBF-EFV2) for one-dimensional problems. Thus, we show that methods based on radial basis functions are as powerful as methods based on polynomial reconstruction. The main contribution is the construction of an algorithm and a smoothness indicator that ensures an interpolation function which fulfills the sign-property on general one dimensional grids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.