Abstract

We develop deterministic particle schemes to solve nonlocal scalar conservation laws with congestion. We show that the discrete approximations converge to the unique entropy solution under more general assumptions than the existing literature: the velocity fields are allowed to be time-dependent (with no regularity in time), they are allowed to be less regular in space (in particular the interaction force can have a discontinuity at the origin), no prescribed attractive/repulsive regimes or symmetry are required, and the mobility can have unbounded support. We treat in a unified manner two different schemes, with sampled and integrated interaction, showing that they both converge to the entropy solution, albeit with different trade-offs between accuracy and computational effort. We complement our results with some numerical simulations, among which we show the applicability to the multispecies setting, for which the integrated scheme appears to be the better choice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.