Abstract

HypothesisThe underlying mechanism for increased reaction rates in micellar catalysis-based organic synthesis is a reduced entropy barrier for the reaction. A two-dimensional localization of reactants and catalyst in the surfactant micelle reduces the translational entropy of all components. The entropy is reduced less for the reaction intermediate than for the reactants, which leads to the lower barrier. SimulationsQuantum chemistry, the COSMO-RS implicit solvent model and statistical thermodynamics were employed to predict the stability of a range of reactants, catalysts and intermediates in a series of surfactant micelles. The localized stability in the linker region between the lipophilic and hydrophilic regions and the resulting decrease in entropy were also calculated. FindingsThe predicted reaction rates for the proposed mechanism show that the entropy reduction leads to a larger prefactor for the reaction. The resulting reaction rate can be significantly higher than conventional organic synthesis in an organic solvent even when the smaller reaction volume and lower reaction temperatures typically needed under micellar catalysis conditions are considered. The results are general across a wide range of types of reactions, reactants and catalysts and a selection of surfactants commonly used in organic synthesis, strongly supporting the hypothesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call