Abstract

A run-and-tumble particle in a one-dimensional box (infinite potential well) is studied. The steady state is analytically solved and analyzed, revealing the emergent length scale of the boundary layer where particles accumulate near the walls. The mesoscopic steady state entropy production rate of the system is derived from coupled Fokker-Planck equations with a linear reaction term, resulting in an exact analytic expression. The entropy production density is shown to peak at the walls. Additionally, the derivative of the entropy production rate peaks at a system size proportional to the length scale of the accumulation boundary layer, suggesting that the behavior of the entropy production rate and its derivatives as a function of the control parameter may signify a qualitative behavior change in the physics of active systems, such as phase transitions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call