Abstract

On a fine grained scale the Gibbs entropy of an isolated system remains constant throughout its dynamical evolution. This is a consequence of Liouville’s theorem for Hamiltonian systems and appears to contradict the second law of thermodynamics. In reality, however, there is no problem since the thermodynamic entropy should be associated with the Boltzmann entropy, which for non-equilibrium systems is different from Gibbs entropy. The Boltzmann entropy accounts for the microstates which are not accessible from a given initial condition, but are compatible with a given macrostate. In a sense the Boltzmann entropy is a coarse grained version of the Gibbs entropy and will not decrease during the dynamical evolution of a macroscopic system. In this paper we will explore the entropy production for systems with long range interactions. Unlike for short range systems, in the thermodynamic limit, the probability density function for these systems decouples into a product of one particle distribution functions and the coarse grained entropy can be calculated explicitly. We find that the characteristic time for the entropy production scales with the number of particles as , with , so that in the thermodynamic limit entropy production takes an infinite amount of time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.