Abstract

Entropy production rate (EPR) is the fundamental theoretical quantity in non-equilibrium thermodynamics whereas reaction rate is the primary experimental quantity for a chemical system out-of-equilibrium. In this work, we explore a connection between the above two quantities for general reaction networks. Both cyclic and linear networks of arbitrary dimension are studied, along with a mixed variety. The systems can attain a non-equilibrium steady state (NESS) under chemiostatic condition, which becomes the state of true thermodynamic equilibrium when detailed balance holds. We show that there exists a universal functional relationship of the EPR with reaction rate close to steady states for all the networks considered. Near a NESS, the former varies linearly with the reaction rate. On the other hand, around a true equilibrium, it varies quadratically with the latter. Numerical experiments justify our analytical findings quite transparently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.