Abstract

Patra etal. [Int. J. Bifurcat. Chaos 26, 1650089 (2016)IJBEE40218-127410.1142/S0218127416500899] recently showed that the time-averaged rates of entropy production and phase-space volume contraction are equal for several different molecular dynamics methods used to simulate nonequilibrium steady states in Hamiltonian systems with thermostated temperature gradients. This equality is a plausible statistical analog of the second law of thermodynamics. Here we show that those two rates are identically equal in a wide class of methods in which the thermostat variables z are determined by ordinary differential equations of motion (i.e., methods of the Nosé-Hoover or integral feedback control type). This class of methods is defined by three relatively innocuous restrictions which are typically satisfied in methods of this type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.