Abstract

The question of characterization of the degree of nonequilibrium activity in active matter systems is studied in the context of a stochastic microswimmer model driven by a chemical cycle. The resulting dynamical properties and entropy production rate unravel a complex interplay between the chemical and the hydrodynamic degrees of freedom beyond linear response, which is not captured by conventional phenomenological approaches. By studying the precision-dissipation trade off, a new protocol is proposed in which microscopic chemical driving forces can be inferred experimentally. Our findings highlight subtleties associated with the stochastic thermodynamics of autonomous microswimmers. Published by the American Physical Society 2024

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.