Abstract
Clarifying the impact of quantumness in the operation and properties of thermal machines represents a major challenge. Here we envisage a toy model acting either as an information-driven fridge or as heat-powered information eraser in which coherences can be naturally introduced in by means of squeezed thermal reservoirs. We study the validity of the transient entropy production fluctuation theorem in the model with and without squeezing as well as its decomposition into adiabatic and non-adiabatic contributions. Squeezing modifies fluctuations and introduces extra mechanisms of entropy exchange. This leads to enhancements in the cooling performance of the refrigerator, and to overcoming Landauer's bound in the setup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.