Abstract
We report on a numerical experiment performed to analyze fluctuations of the entropy production in turbulent thermal convection, a physical configuration taken here as a prototype of an out-of-equilibrium dissipative system. We estimate the entropy production from instantaneous measurements of the local temperature and velocity fields sampled along the trajectory of a large number of pointwise Lagrangian tracers. The entropy production is characterized by large fluctuations and becomes often negative. This represents a sort of “finite-time” violation of the second principle of thermodynamics, since the direction of the energy flux is opposite to that prescribed by the external gradient. We clearly show that the entropy production normalized by a suitable small-scale energy verifies the Fluctuation Relation (FR), even though the system is time-irreversible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.