Abstract
A novel method is proposed to construct collisionless fluid closures accounting for some kinetic properties. The idea consists in optimizing the agreement between the fluid and kinetic quasi-linear entropy production rates, so as to constrain the closure coefficients. This procedure is applied to the slab branch of the ion temperature gradient driven instability. Focusing on the kinetic regime characterized by slow waves, the closure proposed by Hammett and Perkins (Hammett and Perkins 1990 Phys. Rev. Lett. 64 3019) naturally emerges from the systematic identification of the kinetic and fluid entropy production rates. This closure is revealed to be extremely powerful well beyond the kinetic regime. Besides, it reconciles the fluid and kinetic linear stability diagrams in the two-dimensional space of the density and temperature gradient lengths. Such a method is systematic and generic. As such, it is applicable to other models and classes of instabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.